Chengdu J-10

Maquettes, images, meetings, aviation réelle
Avatar de l’utilisateur

Topic author
Deltafan
As du Manche
As du Manche
Messages : 10220
Inscription : 13 avril 2004

Chengdu J-10

#1

Message par Deltafan »

Bizarrement, pas trouvé de topic spécifique récent sur cet avion, qui remplace des Mirage III au Pakistan et pourrait un jour se retrouver face à des Mirage 2000 et Rafale indiens.

Que du très vieux (2007) :

viewtopic.php?f=279&t=131918&p=619717
https://checksix-forums.com/viewtopic.php?p=732985

ou du plus ou moins ponctuel :

viewtopic.php?f=279&t=214423 (vente au Pakistan)
viewtopic.php?f=279&t=202959&start=25#p1685874 (présentation en vol J-10 à tuyères vectorielles)
viewtopic.php?t=160049 (crash)
https://checksix-forums.com/viewtopic.p ... 9&t=213841 (crash)

Je profite donc d'un article de Global Defense Corp, pour ouvir ce nouveau topic :

d'abord, la page wikipedia du bestiau

https://fr.wikipedia.org/wiki/Chengdu_J-10

ensuite l'article, avec le titre : Here’s Why China’s Chengdu J-10C Vigorous Dragon Worse Than You Think

https://www.globaldefensecorp.com/2024/ ... you-think/

Article à charge sur la bestiole (fiabilité, capacités d'emport, avionique/radar, réacteur, ...). A vérifier si d'autres éléments ultérieurs confirmeront ou infirmeront..
(...)
J-10 is 3rd Gen fighter (J-10A/B and J-10S) and fourth Gen fighter (J-10C) program proposed in 1980 and funded with $500 million; the chief designer is Song Wencong (1930–2016). Song Wencong (1930–2016) (...) and his team consulted with IAI, Israel, but because of a lack of alloy development, J-10A/B/C only brought a weapons load of around 4,5 tons. The first flight happened in 1998 flight by test pilot Lei Qiang, and entered production in 2005.

The A/B series was equipped with Doppler radar that could track 8 targets and engage two targets simultaneously.
(...)
The PRC also tried to acquire Israeli technology. Of interest were the IAI Lavi and the Elta Phalcon AEW radars. At some point, the US blocked the Phalcon acquisition; Lavi technology ended up in Chinese hands. The Chengdu J-10 started as several failed projects during the 1960s and 1970s. These designs included canards and variable geometry, among other things, but none succeeded because they were beyond China’s aerospace industry’s capacities. The technology acquisitions helped to complete the design.
The Chengdu J-10 looks similar to the IAI Lavi: general layout, canards and air intake. The latter is the same design as the Lockheed Martin F-16. The information the PRC obtained from the IAI Lavi was important in developing the Chengdu J-10. Several projects failed before it. The IAI Lavi is a development of the Lockheed Martin F-16. Anything based on the Lavi is based on the F-16 as well.
(...)

A fleet of 100 J-10C fighter jets would end with an annual operating cost of about $2bn, while having 100 F-16V will cost about $3bn/year for sustainment,
(...)
In actual combat, four F-16s, or four Super Hornets, or 2 Gripens can do the job of a squadron of J-10C (...) because the J-10C (...) can fly with fewer weapons and costs very high to maintain. J-10C (...) cannot sustain long-duration combat sorties and must refuel or return to base for maintenance work. In terms of performance, the F-16 has a higher top speed and a longer range than the J-10. The F-16 has a more advanced avionics suite equipped with more modern weapons than the J-10C fighter jets.

(...)
A newly built J-10C fighter has been fitted with a domestically developed WS-10 Taihang engine to replace the Russian-made AL-31 engine. The WS-10 Taihang engine is a work in progress and is many years behind in becoming a mature product. (...). the J-10 (...) uses a Flanker’s Saturn-Lyulka AL-31FN engine or a WS-10A, which forcedly makes it less reliable than the P&W F100 -PW-229 or GE F110-GE-129 on F-16. The heavy Russian and Chinese (manque un mot ?) made the J-10 slower and carried fewer payloads.
The canards will give some advantage to the J-10 in instantaneous turn rate, while F-16 will be advantaged in continuous turn rate. F-16 is lighter with a little more thrust and more payload, thus, it’s clear that, at ¥190M ($28.5 million), vs. $85 million for the latest F-16V, which inherit some of the F-35 combat systems, J-10 is surely a better bang for the buck if your air-force is on super-tight budget… But the AL-31F or the WS-10A will likely have you end up with higher costs of use than the F-16, thanks to numerous full engine overhauls and short lifespans.
(...)
China’s difficulties with jet engines may be surprising given the country’s massive and successful military buildup. It’s also no secret that China is skilled at reverse-engineering foreign technology to make domestic copies. Virtually every Chinese fighter jet is based on stolen or reverse-engineered designs. There is precedent for reverse-engineering jet engines, but while China has plenty of access to Russian jet engines, Beijing’s attempts to produce its domestic designs have been largely unsuccessful. One of its earliest versions of a domestically designed engine, the WS-10A, regularly broke down after just 30 hours of use.
There are many reasons for these failures. First, Russia knows China has stolen its intellectual property before and is reluctant to sell Beijing its best engines. Moscow also doesn’t sell standalone engines; instead, it includes them on existing jets, which makes copying them difficult. Second, reverse-engineering skills don’t easily translate into proficiency in developing new jet engines from scratch. That requires technological know-how that takes years of intensive learning to develop and generations to perfect. Perhaps most importantly, manufacturing jet engines is just extremely complicated.
(...)

China touted its KLJ-7A AESA radar as good as the Western radar, but looking beneath the surface, KLJ-7A is just a carbon copy of the Zhuk-AME radar developed by Russia. When NIIR Phazotron couldn’t develop the Zhuk-AME further because it failed to produce electronics locally without South Korean help and ran out of money, it sold the technology to China as is.
Nanjing Research Institute of Electronics Technology’s (NRIET’s) deputy director Wang Hongzhe said that the KLJ-7A has a range of 150 km against an aerial target with 5m² RCS (radar cross-section) or 100 km against an ground target with fifteen square meters of RCS due to poor target discrimination capabilities. It can track 10 targets and engage four simultaneously. Though equipped with 160 TRMs identical to Zhuk-MA. it is unknown if the KLJ-7A’s TRMs are built from gallium arsenide (GaA).
The KLJ-7A AESA radars provide less capability against electronic warfare (EW) jamming and enemy radar detection. The AESA radars utilize many arrays – i.e. transmit and receive modules (TRM) – that can each transmit in a different frequency. Russian and Chinese-built TRM produce heat, so to cool down the TRM, Russian engineers created an auto-shutdown feature for Zhuk-AME/KLJ-7A radar, reducing the frequencies it can produce. Hence reducing the capability of the radar.
The radar combined three modules on the back of the radar – the power supply, the computer and the cooling cell. The antenna and the computer module are liquid-cooled, as is marked on the housing. The cooling systems reportedly underperformed compared to the cooling systems of Western radar.

The PL-10 short-range AAM was introduced last year. Chinese media has highlighted that the PL-10 is the first all-aspect missile in the PLAAF, with a 60-degree off-boresight angle and thrust-vectoring capabilities. It is reported to have a range of at least 20 km and with a multi-element imaging infrared seeker, instead of active-radar homing missiles.
The Western missiles such as AIM-9X and IRIS-T have 90 degree off-boresight and advanced data link to guide missile to the target.
The J-10B/C series has also become PLAAF’s latest multi-role fighter since it can perform ground strike and anti-defence roles with the KD88H missile and YJ91 anti-radiation missile, respectively. J-10C variant carries an SD-10 (PL-12D) air-to-air missile with a 100km range, which can be compared to the American AIM-120A AMRAAM variant.

Lockheed Martin offered the Pakistan Air Force (PAF) an upgrade package for its fleet of F-16C/D aircraft and purchase new F-16V Block 70, which PAF rejected because Pakistan is under major lifeline funding from IMF, China and Saudi Arabia. Pakistan cannot source money to sustain F-16C/D due to its debt trap to China.
Pakistan can only (...) purchase less capable J-10C fighter jets and resort to propaganda as the Russians and Chinese do all the time about their military hardware.

In conclusion, the lack of modern avionics, radar and armament suite, and whatever Chinese and Pakistani propaganda may reflect, the actual performance of the J-10C is not even close to South Korean FA-50 and American F-16 Block 50/52 aircraft.
(...)
"Toujours en mouvement est l'avenir…"
Yoda

Revenir à « Aviation passion »